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Abstract— Sparse representation has shown an attractive
performance in a number of applications. However, the available
sparse representation methods still suffer from some problems,
and it is necessary to design more efficient methods. Particularly,
to design a computationally inexpensive, easily solvable, and
robust sparse representation method is a significant task. In this
paper, we explore the issue of designing the simple, robust,
and powerfully efficient sparse representation methods for image
classification. The contributions of this paper are as follows.
First, a novel discriminative sparse representation method is
proposed and its noticeable performance in image classification
is demonstrated by the experimental results. More importantly,
the proposed method outperforms the existing state-of-the-art
sparse representation methods. Second, the proposed method is
not only very computationally efficient but also has an intuitive
and easily understandable idea. It exploits a simple algorithm
to obtain a closed-form solution and discriminative represen-
tation of the test sample. Third, the feasibility, computational
efficiency, and remarkable classification accuracy of the proposed
l2 regularization-based representation are comprehensively
shown by extensive experiments and analysis. The code of
the proposed method is available at http://www.yongxu.org/
lunwen.html.

Index Terms— Efficient computation, face recognition,
l2 regularization, sparse representation.

I. INTRODUCTION

SPARSE representation has drawn much attention since
it was proposed in the pattern recognition and machine

learning communities [1]–[3]. Sparse representation has
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achieved a noticeable performance in image classifica-
tion [4]–[7], image super-resolution [8], [9], image denois-
ing [10], and image alignment [11].

A number of variants of the sparse representation meth-
ods have been proposed in recent years. The taxonomy
of the sparse representation methods for image classifica-
tion can be considered in different ways. In terms of the
atoms used, the sparse representation methods can be cate-
gorized into two kinds, the Naive training sample-based and
dictionary-based methods. The Naive training sample-based
sparse representation directly exploits the original training
samples as the atoms to produce the representation of the
test sample, whereas the dictionary-based sparse representa-
tion first uses an algorithm and the original training sam-
ples to obtain a dictionary, and then exploits this dictionary
as the atoms to lead to the representation of the test
sample [5], [12]–[17], [44].

It is often that some constraints are imposed on the sparse
representation methods. The most widely used constraints
include l1 regularization [1], [2], l2 regularization [18]–[20]
and l21 regularization [21], [22]. The l2 regularization-based
representation method has distinctive advantages. One advan-
tage is that it almost has a closed-form solution.

In this paper, we propose a novel idea to design the sparse
representation method by enhancing the distinctiveness of
different classes. This is very beneficial to produce higher clas-
sification accuracy. A simple, but competent objective function
is proposed, and a very computationally efficient algorithm
is designed. Moreover, the proposed method is based on the
mathematically tractable l2 regularization rather than the l1
or l21 regularization. The representation coefficients obtained
using the l2 regularization-based representation method are not
as sparse as those obtained using the l1 regularization-based
representation method. The proposed method is reasonable and
compatible with the nature of sparse representation due to
the following factors. First of all, the sparse representation
exploits the residuals of different classes, i.e., class-specific
residuals as the distances of these classes with respect to the
test sample. The proposed method enables different classes to
be more discriminative. As a result, it can obtain a great class
difference, which is helpful for the representation methods
to obtain discriminative class-specific residuals and to better
recognize the test sample.

The other parts of the paper are organized as follows.
Section II presents related works. Section III describes the
proposed method including its advantages and rationale.
Section IV presents a comparison between the proposed
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method and other methods. Sections V and VI offer the
experimental results and conclusion, respectively.

II. RELATED WORKS

Let L be the total number of all classes. If each class
has m training samples, then there are N(N = mL)
training samples in total. We use the column vectors
xm(c−1)+1, xm(c−1)+2, . . . , xcm to stand for the m
training samples of the cth (c = 1, 2, . . . , L)
class, respectively. We define training sample matrix
X = [X1, K , . . . , Xc, . . . , X L ] = [x1, K , . . . , xm(c−1)+1, . . . ,
xmc, . . . , xN ], where Xc = [xm(c−1)+1, xm(c−1)+2, . . . ,
xmc], and let column vector y denote the test sample.

A. l2 Regularization-Based Representation

l2 regularization-based representation is a kind of
computationally efficient method. Collaborative representa-
tion classification (CRC) is a typical example of the l2
regularization-based representation. In addition to CRC,
a small number of other l2 regularization-based representation
methods have also been proposed. For example, both robust
regression for classification [23] and two-phase test sample
sparse representation [20], [24] are l2 regularization-based
representation methods. If Naive l2 regularization is directly
applied, it seems that the sparse property will not be well
guaranteed [25]. However, as shown in [18], [20], and [24],
by exploiting a special means, l2 regularization can also
obtain satisfactory sparse property. Especially, the elaborated
algorithms of l2 regularization-based representation, such as
the ones designed in [20] and [24], can obtain quite sparse
representation coefficients, and flexibly control the extent of
sparsity.

In this section, we briefly introduce the CRC as an example
of the l2 regularization-based representation methods. CRC
first produces a representation of the test sample via a linear
combination of all the training samples. In other words, CRC
first assumes that the following equation is approximately
satisfied and solves it using the ridge regression:

y =
N∑

i=1

ai xi . (1)

Equation (1) can be rewritten as

y = X A, A = [a1, . . . , aN ]T . (2)

Here, we refer to ai (i = 1, 2, . . . , N) as the coefficients.
CRC solves (2) using Ā = (X T X +μI )−1 X T y, where μ is

a small positive constant and I is the identity matrix [19].
Hereafter, Ā is referred to as the representation coefficients,
i.e., solution. If some of the representation coefficients are
zero or close to zero, we can refer to the solution as sparse
representation coefficients. Let Ā j = [ām( j−1)+1, . . . , āmj ]T ,
where 1 ≤ j ≤ L and āmj stands for the mjth entry of Ā.
We refer to Ā j as the coefficient vector of the j th class.
The classification rule of CRC is as follows: the dissimilarity
between the test sample y and the j th class is defined as
d j = (||y − X j Ā j ||/|| Ā j ||). If k = arg min j d j , then the test
sample y is assigned to the kth class.

B. l1 Regularization-Based Representation

l1 regularization-based representation solves the following
problem [2]:

min ||A||1 s.t. y = X A (3)

or

min ||A||1 s.t. ||y − X A||2 < ε (4)

where ε stands for a small positive constant. l1 regularization-
based representation should be implemented by using an
iterative algoriTh. Important and noticeable l1 regularization-
based representation algorithms include l1-regularized least
squares (L1LS) [26], fast iterative shrinkage and thresh-
olding algorithm [27], [32], homotopy and augmented
Lagrangian [28], [29], and orthogonal matching pursuit [30].

The classification procedure of l1 regularization-based
representation is as follows. Let Ā be the solution of l1
regularization-based representation. Ā j is also the coefficient
vector of the j th class. The dissimilarity between the test
sample y and the j th class is defined as d j = ||y − X j Ā j ||.
If k = arg min j d j , then the test sample y is assigned to the
kth class.

III. PROPOSED METHOD

Suppose that the test sample y and each training
sample xm(i−1)+ j (i = 1, . . . , L, j = 1, K , . . . , m) are the
D-dimensional column vectors. Because there are L classes
and N training samples in total, X is a D by N matrix.

A. Description of the Method
The objective function of the proposed method is defined as

min
B

‖y − X B‖2 + γ

L∑

i=1

L∑

j=1

‖Xi Bi + X j B j‖2 (5)

where γ denotes a positive constant, and is used to bal-
ance the effect of both terms in the objective function
of the proposed method. When it is set to a proper
value, these two terms in the objective function can
have good effect. The relationship among Bi , B j , and B
is defined as follows. If B = [b1, b2, . . . , bN ]T , then
Bi = [bm(i−1)+1, bm(i−1)+2, . . . , bmi ]T , B j = [bm( j−1)+1,
bm( j−1)+2, . . . , bmj ]T , and B = [B1, B2, . . . , BL]T .

It can be verified that the objective function in (5) is convex
and differentiable, and thus the optimal solution of (5) is just
the stationary point of the objective function. The derivative
of the objective function is computed as follows. First

d

d B
‖y − X B‖2 = −2X T (y − X B). (6)

Then, we need to determine
(d/d B)(γ

∑L
i=1

∑L
j=1 ‖Xi Bi + X j B j‖2).

Since f (B) = γ
∑L

i=1
∑L

j=1 ‖Xi Bi + X j B j‖2 dose not
explicitly contain B , we first seek partial derivatives (∂ f /∂ Bk),
and then exploit all (∂ f /∂ Bk) (k = 1, . . . , L) to obtain
(d f /d B).

f (B) is the sum of L2 terms of which only 2L − 1 terms
are dependent on Bk . When determining (∂ f /∂ Bk), we only
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need to calculate the partial derivatives of these 2L − 1 terms
with respect to Bk , which is presented in detail as follows:
f (B)

= γ

⎛

⎜⎜⎝
∑

j=1,...,L
j �=k

‖Xk Bk + X j B j‖2 +
∑

i=1,...,L
i �=k

‖Xi Bi + Xk Bk‖2

+
∑

i=1,...,L
i �=k

∑

j=1,...,L
j �=k

‖Xi Bi + X j B j‖2

⎞

⎟⎟⎠

= γ

⎛

⎜⎜⎝2
∑

j=1,...,L
j �=k

‖Xk Bk + X j B j‖2

+
∑

i=1,...,L
i �=k

∑

j=1,...,L
j �=k

‖Xi Bi + X j B j‖2

⎞
⎟⎟⎠ . (7)

Hence, the partial derivative over Bk of f (B) is

∂ f

∂ Bk
= ∂

∂ Bk

⎛

⎝γ

L∑

i=1

L∑

j=1

‖Xi Bi + X j B j‖2

⎞

⎠

= γ
∂

∂ Bk

⎛
⎜⎜⎝2

∑

j=1,...,L
j �=k

‖Xk Bk + X j B j‖2

+
∑

i=1,...,L
i �=k

∑

j=1,...,L
j �=k

∥∥Xi Bi + X j B j
∥∥2

⎞

⎟⎟⎠ (8)

∂ f

∂ Bk
= 2γ

∑

j=1,...,L
j �=k

∂

∂ Bk
‖Xk Bk + X j B j‖2

= 2γ
∑

j=1,...,L
j �=k

2X T
k (Xk Bk + X j B j )

= 4γ X T
k

⎛

⎜⎜⎝(L − 1)Xk Bk +
∑

j=1,...,L
j �=k

X j B j

⎞

⎟⎟⎠

= 4γ X T
k

⎛

⎝L Xk Bk +
L∑

j=1

X j B j

⎞

⎠

= 4γ X T
k (L Xk Bk + X B). (9)

Thus, the derivative (d f /d B) is

d f

d B
=

⎛
⎜⎜⎜⎜⎝

∂ f

∂ B1
...

∂ f

∂ BL

⎞
⎟⎟⎟⎟⎠

=
⎛

⎜⎝
4γ X T

1 (L X1 B1 + X B)
...

4γ X T
L (L X L BL + X B)

⎞

⎟⎠

= 4γ L

⎛
⎜⎝

X T
1 X1 · · · O
...

. . .
...

O · · · X T
L X L

⎞
⎟⎠ B + 4γ X T X B. (10)

Algorithm 1 l2 Regularization Based Discriminative Sparse
Representation Algorithm

Input: γ , y, X = [X1, . . . , X L ].
Output: di , p, B = [B1, . . . , BL]T

1. B is calculated using

B = (
(1 + 2γ )X T X + 2γ L M

)−1
X T y.

2. The distance between the test sample y and the i -th class
training samples is obtained using class-specific residual

di = ||Xi Bi − y||22, i = 1, . . . , L .

3. Test sample y is classified to the p-th class,
if p = arg min

i
di .

Let

M =
⎛

⎜⎝
X T

1 X1 · · · O
...

. . .
...

O · · · X T
L X L

⎞

⎟⎠

then
d f

d B
= 4γ (L M B + X T X B).

In conclusion, let g = ‖y − X B‖2 +
γ

∑L
i=1

∑L
j=1 ‖Xi Bi + X j B j‖2, then we have (dg/d B) =

−2X T (y − X B) + 4γ (L M B + X T X B). Thus, the stationary
point of g is obtained under the condition (dg/d B) = 0,
which means ((1 + 2γ )X T X + 2γ L M)B = X T y. Finally
the optimal solution of (5) is

B = ((1 + 2γ )X T X + 2γ L M)−1 X T y. (11)

The proposed method then uses the same classification
procedure as the conventional sparse representation methods.
In order to provide a full description, the algorithm of the
proposed method is presented in Algorithm 1.

IV. INSIGHT INTO THE PROPOSED METHOD

In this section, we present the advantage, rationale, and
computational complexity of the proposed method.

A. Advantages and Computational Complexity
of the Proposed Method

The first advantage of the proposed method is that it has a
closed-form solution. This is because the proposed method
is based on the l2 regularization rather than the l1 or l21
regularization. For the same reason, the proposed method is
mathematically tractable and computationally efficient. It is
notable that, as is shown later, the proposed method achieves
much higher accuracy than CRC, the typical example of
the l2 regularization-based representation methods. Moreover,
it is that the representation coefficients obtained using our
method and the l1 regularization-based representation methods
have no essential difference. The representation coefficients
obtained using our method and an l1 regularization-based
representation method, and the L1LS method [26] are shown
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Fig. 1. Representation coefficients on the last test sample of the GT face data
set (There are 50 subjects, and each subject has 15 images) obtained using
our method. The first three face images of each subject were used for training,
and the remaining images were used for testing. The horizontal axis shows
the number of training sample, and the vertical axis shows the representation
coefficient corresponding to each training sample. The horizontal vertical axes
in Figs. 2–4 play the same roles.

Fig. 2. Representation coefficients on the last test sample of the GT face
data set obtained using the L1LS method issued via [25]. The first three face
images of each subject were used for training, and the remaining images were
used for testing.

Fig. 3. Representation coefficients on the second test sample obtained using
our method on the Extended YaleB face data set (There are 38 subjects, and
each subject has 64 images). The first eight face images of each subject were
used for training, and the remaining images were used for testing.

Fig. 4. Representation coefficients on the second test sample obtained using
the L1LS algorithm issued via [25] on the Extended YaleB face data set.
The first eight face images of each subject were used for training, and the
remaining images were used for testing.

in Figs. 1–4. It can be seen from Figs. 1–4 that the representa-
tion coefficients of these two methods have somewhat similar
distributions.

In order to quantify the sparsity, we conducted a spe-
cial experiment. We used a widely applied sparsity metric

Fig. 5. Comparison of average sparseness among our method, the CRC
method, and the L1LS method on the GT data set. The horizontal axis shows
the number of training sample per class, and the vertical axis shows average
sparseness of the representation coefficients corresponding to the test samples.

Fig. 6. Comparison of average sparseness among our method, the CRC
method, and the L1LS method on the Extended YaleB data set. The horizontal
axis shows the number of training sample per class, and the vertical axis shows
average sparseness of the representation coefficients corresponding to the test
samples.

to compare the proposed method, the CRC method, and
the L1LS method. For a solution vector, i.e., the repre-
sentation coefficients in the form of x = [x1, x2, . . . , xN ],
the sparsity metric is defined as sparseness (x) =
(
√

N − (
∑ |xi |)/(∑ x2

i )1/2/
√

N − 1) [31]. From the formula,
we know that the larger the value of sparseness, the sparser
the vector. Figs. 5 and 6 present the comparison results on
the GT data set and the Extended YaleB data set, respectively.
They denote average sparseness for all the test samples under
the condition that a different number of face images per class
are used as the training samples. It can be seen that our method
achieves better sparsity than the CRC method on both data
sets. However, the proposed method is less sparse than the
L1LS method on the GT data set. On the Extended YaleB
data set, the sparseness of the L1LS method is better than
that of our method under the condition that 8, 10, 12, 14,
and 18 face images per class are used as the training samples.
Thus, we believe that our method is not always less sparse than
L1LS, which obtains better sparsity under some conditions.

The computational complexity of the proposed method is
described as follows. The main computations are the matrix
operations in (11). The computational complexity of X T X
in (10) is O(DN2). Because of X = [X1, . . . , X L ], we have

X T X =
⎛
⎜⎝

X T
1 X1 · · · X T

1 X L
...

. . .
...

X T
L X1 · · · X T

L X L

⎞
⎟⎠ .
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As a result, after we calculate X T X , we can directly
obtain M , and no extra computational complexity is needed.
Let H = (1 + 2γ )X T X + 2γ L M , then H is N by N matrix.
Thus, the computational complexity of H −1 is O(N3). The
computational complexity of P = H −1X T is also O(DN2).
The computational complexity of Q = Py is also O(DN).
It should be pointed out that in our method P = H −1X T

needs to be calculated only once, whereas Q = Py should be
implemented for every test sample. As a result, if there are R
test samples in total, then the computational complexity of (11)
will be O(DN2 + N3 + DN R). Actually, this is similar to that
of CRC and is much less than those of the l1 regularization-
based sparse representation methods.

We analyzed the computational complexity of eight methods
in our comparison experiment including CRC [19], L1LS [26],
FISTA [32], homotopy [28], the dual augmented lagrangian
method (DALM) [28], improvement to the nearest neighbor
classifier (INNC) [43], a fusion classification method (FCM)
proposed in [44], and linear discriminant analysis (LDA) [45].
We assumed that there are R test samples. When we used CRC
to perform classification of all the R test samples, the main
computational load of CRC was in the calculation of matrix
P = (X T X + μI )−1 X T whose complexity is O(DN2 + N3).
Thus, for the R test samples, CRC has a computational com-
plexity of O(DN2 + N3 + DN R), which is similar to that of
our method. Because the L1LS, FISTA, homotopy, and DALM
are different algorithms of SRC, their computational complex-
ity is also different. For L1LS, FISTA, homotopy, and DALM,
the computational complexity for classification of all the R test
samples is at least O(RT DN), O(RDN2 + RDN), O(RN2 +
RDN), and O(RT D2 + RT N D), respectively, where T is
the iteration number. The computational complexity of both
the INNC and FCM methods are O(DN2 + N3 + RDN).
The LDA method mainly needs to compute the within-class
and between-class scatter matrices, and the computational
complexity is O(D3 + RD2). The computational superiority
of our method is twofold. First, it has a closed-form solution,
and no iterative calculation is needed. Second, when there
are a large number of test samples, our method has a lower
computational complexity than L1LS, FISTA, homotopy, and
DALM.

B. Rationale of the Proposed Method

The proposed method is able to enhance discriminant repre-
sentations of the test sample generated from different classes,
which is beneficial for correct classification of the test sample.
Differing from our work, previous methods that have a similar
effect mainly focused on obtaining different dictionaries for
different classes via dictionary learning rather than directly
enhancing the distinction of the original training samples.
For example, Ramirez et al. [33] generated the dictionaries
associated with different classes with the goal that the inde-
pendence is as great as possible. Yang et al. [13] produced
a discriminative dictionary for every class. Discriminative
dictionary learning and discriminative sparse representations
were also applied to image analysis, clustering analysis [34],
motion tracking [35], [36], and image segmentation [37].

Compared with these methods, our method is simpler and
easier to implement.

The proposed method has the following rationale. First
of all, we refer to Xi Bi as the representation result of
the test sample obtained using the training samples of the
i th class. The first term of the objective function of our
method is the same as the conventional sparse represen-
tation methods and aims to obtain the minimum residual,
the reasonability of which is easy to understand. In order
to interpret the second term of the objective function,
we first rewrite ‖Xi Bi + X j B j‖2 as ‖Xi Bi + X j B j‖2 =
‖Xi Bi‖2 + ‖X j B j‖2 + 2(Xi Bi )

T (X j B j ). Thus, to minimize
‖Xi Bi + X j B j‖2 is equivalent to simultaneously minimize
(Xi Bi )

T (X j B j ) and ‖Xi Bi‖2, i = 1, . . . , L. Minimization

of (Xi Bi )
T (X j B j ) means that the representation results of

the i th and j th classes have the lowest correlation, which
enables the representation results of different classes to be very
discriminative. Thus, the second term of the objective function
is able to decorrelate the representation results of different
classes. The decorrelation effect for different classes can only
be achieved by minimizing the sum of (Xi Bi)

T (X j B j ), not
any individual terms. As a result, the method will more easily
distinguish the class really nearest to the test sample from
the other classes and will more easily correctly classify the
test sample. Minimization of ‖Xi Bi‖2(i = 1, . . . , L) implies
that the representation result of each class has a small norm.
In addition, similar to other representation methods, in our
method, the training samples of different classes also compete
in representing the test sample. In other words, since the
test sample is expressed as a weighted sum (i.e., a linear
combination) of the training samples of all the classes, each
class has a contribution to representing the test sample. Com-
petition means that when training samples of a class have a
great contribution to representing the test sample, other classes
have relatively less contribution.

Both the proposed method and CRC belong to
l2 regularization-based representation. The proposed method
is as computationally very efficient as CRC, but has an
elaborated design and goal. As presented earlier, the objective
function and motivation of the proposed method are distinctive
in comparison with CRC. Moreover, it can be seen from
the solutions of the proposed method and CRC that they
also have the following difference on the regularization term,
which is important in obtaining numerically stable solutions.
As shown in Section II-A, the regularization term in the
solution of CRC is μI . In other words, the effect of the
regularization term of CRC is to add only small positive
constants to the diagonals of X T X .

In the algorithm of our proposed method, the regularization
term is

2γ L M = 2γ L

⎛

⎜⎜⎜⎝

X T
1 X1 · · · O

...
. . .

...

O · · · X T
L X L

⎞

⎟⎟⎟⎠.

It has the following effect: it not only regularizes the diagonals
of X T X but also regularizes the m × m diagonal regions
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Fig. 7. Some face images from the ORL face data set. The face images
shown in the first, second, and third rows are from three different subjects.

of X T X . This takes into account the correlation between the
samples from the same class.

V. EXPERIMENTAL RESULTS

In this section, we used several data sets to test and verify
the effectiveness of the proposed method. The data sets used
include the FERET [38], ORL [39], Georgia Tech (GT) [40],
Extended YaleB [41], and CMU Multi-PIE [46] face data sets.
We also tested CRC [19], L1LS [26], FISTA [32], homo-
topy [28], DALM [29], INNC [43], and an FCM proposed
in [44] for experimental comparison. LDA [45] integrated with
the nearest neighbor classifier was also tested. All experiments
showed that our proposed method obtained the highest accu-
racy. We chose the optimal value of parameter γ for each data
set from eight candidate values: 0.00001, 0.0001, 0.001, 0.01,
0.1, 1, 10, and 100.

A. Experiments on the ORL Face Data Set

The ORL data set [39] includes 400 face images taken from
40 subjects, each provided with ten face images. For some
subjects, the images were taken at different times, with vary-
ing lighting, facial expressions (open/closed eyes, smiling/not
smiling), and facial details (glasses/no glasses). Each image
was resized to an image with one half of the original size by
using the down-sampling algorithm. Fig. 7 shows some face
images from this data set. The parameter γ in our method was
set to 0.001.The first 2–6 face images of each subject were
used as training samples and the remaining face images were
used as test samples. The experimental results are presented
in Table I.

B. Experiments on the Extended YaleB Face Data Set

The Extended YaleB [41] face data set contains 2414 single
frontal facial images of 38 individuals. These images were
captured under various controlled lighting conditions. The size
of an image was 192 168 pixels. In our experiments, all images
were cropped and resized to 84 96 pixels. Fig. 8 shows some
face images from the Extended YaleB face data set. The first 8,
10, 12, 14, 16, and 18 face images of each subject were treated
as original training samples and treated the remaining face
images that were viewed as testing samples. The parameter γ
was set to 0.001. The experimental results have presented
in Table II.

TABLE I

CLASSIFICATION ACCURACIES OF DIFFERENT METHODS
ON THE ORL FACE DATA SET

Fig. 8. Some face images from the Extended YaleB face data set. The face
images shown in the first and second rows are from two different subjects.

Fig. 9. Some face images from the GT face data set. The face images shown
in the first, second, and third rows are from three different subjects.

C. Experiments on the Georgia Tech Face Data Set

There are 750 available face images (50 subjects and each
has 15 face images) in the GT face data set [40]. These face
images show frontal and/or tilted faces with different facial
expressions, lighting conditions and scale. In our experiments,
all images in the data set were manually cropped and resized
to 30 × 40. Fig. 9 shows some cropped face images from the
GT face data set. We converted every image into gray level
images for training and testing. The first 3–9 face images of
each subject were used as original training samples, and the
remaining face images were treated as testing samples. The
parameter γ was set to 1. The experimental results are shown
in Table III.

D. Experiments on a Subset of the FERET Face Data Set

This subset used is from the well-known FERET face data
set [38], which contains 1400 face images from 200 subjects,
each provided with seven different face images. This subset
is composed of images in the original FERET face data set
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TABLE II

CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON THE EXTENDED YaleB FACE DATA SET

TABLE III

CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON THE GT FACE DATA SET

Fig. 10. Some face images from the FERET face data set. The face images
shown in the first, second, and third rows are from three different subjects.

whose names are marked with two-character strings: ba, bj,
bk, be, bf, bd, and bg. Fig. 10 shows some of these face
images. Every face image was resized to a 40 × 40 image.
The first 2–5 face images of each subject and the remaining
face images were used as the training samples and the test
samples. The parameter γ was set to 100. The experimental
results are presented in Table IV.

E. Experiments on the CMU Multi-PIE Face Data Set

In this section, we evaluated the performance of our
method on the CMU Multi-PIE face data set [46]. The
CMU Multi-PIE face data set is composed of a face image

Fig. 11. Some face images from the CMU Multi-PIE face data set. The face
images shown in the first, second, and third rows are from three different
subjects. These images show effects on facial appearance under different
illuminations.

of 337 persons with variations of poses, expressions, and illu-
minations. Fig. 11 shows some face images from this data set.
We select a subset composed of 249 persons under 20 different
illumination conditions with a frontal pose and 7 different
illumination conditions with a smile expression. All the images
are cropped and resized to 40 × 30 pixels. We choose face
images corresponding to the first 3, 5, 7, 9 illuminations
from the 20 illuminations and only one image from 7 smiling
images as the training samples and use remaining images as
the testing samples. The parameter γ is set to 0.00001. Table V
lists the classification accuracy on four testing sets obtained
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TABLE IV

CLASSIFICATION ACCURACIES OF DIFFERENT METHODS
ON THE FERET FACE DATA SET

TABLE V

CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON THE

SUBSET OF THE CMU MULTI-PIE FACE DATA SET

using different methods. From the results, it can be seen that
our method obtains better classification accuracy than other
methods. In other words, our method is more robust to the
variations of illuminations, poses, and expressions.

F. Comparison of Average Computing Time

In this section, we compare the processing time of all
these methods. To show the computational efficiency, we give
the average time (seconds) taken by all the testing samples
of every method on the ORL and GT face data sets. Our
computing platform is a PC with 2.6 GHz Celeron CPU and
4-GB RAM and the software is MATLAB. Tables VI and VII
present the results of the two data sets. These results show
that our method has a fast computational speed. This speed
is acceptable for real-time applications (such as real-time face
recognition application).

G. Analysis of Experimental Results

From the above experiments, the following points can be
made. First, our proposed method is suitable for recognition
tasks. Especially, under the conditions that face images have

TABLE VI

AVERAGE TIME (s) OF ALL THE TEST SAMPLES
ON THE ORL FACE DATA SET

TABLE VII

AVERAGE TIME (s) OF ALL THE TEST SAMPLES

ON THE GT FACE DATA SET

varying illuminations, facial expressions, and poses, our pro-
posed method can still achieve a satisfactory performance.
Second, for relatively small-scale data sets (e.g., the ORL
data set) and the data sets with slight pose or expression
variations (e.g., the Multi-PIE data set), our method is able to
achieve a very high recognition accuracy, and the other method
also had a good performance. Third, for the parameter in our
method, its optimal value varied with the data sets. In addition,
the experiments on the Multi-PIE data sets partially showed
that in face recognition, the influence of variation of the face
appearance, such as expression variation, may be greater than
the influence of the number of subjects with frontal poses.

VI. CONCLUSION

With the goal of making the representations of the
test sample obtained using different classes as discriminative
as possible, we propose a novel sparse representation method,
which achieves a noticeable performance in face recognition.
Differing from previous studies, this paper designs a simple,
computationally efficient, and robust l2 regularization-
based representation algorithm and comprehensively shows
its advantages. More importantly, no identical idea was
proposed for improving the sparse representation methods
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in the previous studies. The proposed method suggests that
discriminative presentation can be simply achieved by reduc-
ing the correlation of the presentations of the test sample
generated from different classes. This shows that in addition
to sparsity and collaboration playing important roles in the
sparse representation methods, it is also useful to pay attention
to decrease the correlation of the presentations of the test
sample generated from different classes. The idea presented
to enhance the distinctiveness of all the classes may also
be useful for improving the l1 regularization-based sparse
representation methods. We will further study this issue in
the future. An unsolved problem of the proposed method is
that the optimal value of the parameter varies with the data
set. In the future, we will address this problem, and attempt
to design a procedure to choose the optimal value of the
parameter.
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